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Introduction

The very first sentence of Mac Lane and

Moerdijk [5] says:

A topos can be considered both
as a “generalized space” and as
a “generalized universe of sets”.

The “generalized universe of sets” aspect of
toposes is relatively easy to understand and
is well documented in the literature: start
with Goldblatt [1] and proceed via Mac
Lane and Moerdijk [5], or MacLarty [4],
to Johnstone [2]. The basic trick is to
use categorical properties to characterize
set-theoretic constructions in the category of
sets, and thence to transfer them to other
categories that are sufficiently similar.

The generalized spaces, on the other hand,
though present in ideas of toposes right
from their introduction by Grothendieck,
are somewhat mysterious. Much of this is
because the generalized universes of sets are
not direct expressions of the spatial idea
but represent it by a mathematical duality.
My aim here is at least to present a

clear picture of how intuitions of generalized
spaces fit into a mathematical framework of
generalized categories of sets.

To try to be clear, I shall use the word
topos only for the view as generalized space.
When I consider it as a generalized universe
of sets, I shall call it a G-frame (standing
for Giraud/Grothendieck-frame). By the
duality which I shall explain, the G-frame
is used to represent the topos.

Continuous functions

If f(x) is a real-valued function of a
real number x, we have a simple pictorial
intuition of what it means for f to be
“continuous” — namely that its graph has
no gaps or Iinstantaneous jumps in it.
Consider, for instance, the function



A

This has a gap in it — or, if you feel you
could fill that in with a vertical line, it’s
an instantaneous jump. This function is

discontinuous at z = 0.

The definition in terms of drawing graphs
and looking for gaps or jumps is not a
rigorous one, and it was made more precise
as follows. If a function is continuous at
a point 1z, then there is a surrounding
neighbourhood, one that goes a little way
beyond x¢ on each side, within which f(x)
doesn’t stray too far from f(xg). How
big this neighbourhood can be depends on
what you think “too far” means, but as
long as you are prepared to allow f(x)
some positive amount of latitude then you
can also allow x some positive amount of
latitude. To express it in the famous “e —§”
formulation, f is continuous at xq iff

Ve > 0.30 > 0.Va.(|z — 20| < d =
[f(2) = f(zo)| <€)

Topological spaces

That looks very heavily dependent on the
fact that we are working with real numbers,
but really it depends solely on the notion
of “neighbourhood”. For the real numbers,
we say that a set NV is a neighbourhood of
xg ff it contains not only z¢ itself, but also
all the numbers close to zy within some
unspecified positive distance. Then f is
continuous at z¢ iff for every neighbourhood
N of f(x¢) (corresponding to €) there is a
neighbourhood M of xq (corresponding to
d) that is mapped into N by f. It is

possible to axiomatize the notion of neigh-
bourhood in an abstract way and thereby
define continuity for functions in contexts
other than the real line. An alternative
axiomatization, and in many ways a more
useful one, is of open sets, those that are
neighbourhoods of all their elements. Then
a function is continuous (everywhere) iff the

inverse image of every open set is open.

A set equipped with such a structure of
neighbourhoods, or, equivalently, of open
sets, is called a topological space.

Sheaf =
function

continuous set-valued

What could it mean for a set-valued function
S(x) to be continuous? Let us try to
apply the same intuition as we had before.
S 1s continuous at zg I there is some
neighbourhood of xg within which S(z)
doesn’t stray too far from S(xg). What
neighbourhood is needed depends on what
part — which element — of the set S(a)
we are looking at. What we want to
formalize is that each yo € S(xg) is still
in S(x) as long as x is close to x, but
that if we stray too far we start gaining
or losing elements.
neighbourhood N of xg and some selection
yy € S(x) for the values @ € N such that
(yz)zen represents yo “as you move around
a little”.  Such a “continuous set-valued
function” is called a sheaf. What I have
written is admittedly still vague, but it is
the idea behind the definition of sheaf as
local homeomorphism that you will see in
the standard texts. Here is an example of
a sheaf on the real line:

Hence there is some

S()




Notice the forking structure at (A) (z = 0)
and (B) (@ =1). The two blobs above
x =0, near (A), represent two distinct
elements of S(0) (and there’s a third one,
not blobbed, lower down on the lowest thick
horizontal line). To the right, for x just
greater than 0, the two blobs maintain their
separate identities along horizontal lines.
However, to the left, for = just less than
0, they become equal so that S(x) has
only two elements instead of three. (B) is
similar.

We also get a natural notion of morphism
between sheaves S and T
for each x a function from S(x) to T(x),
together with conditions to ensure that these

it will have

functions fit together in a continuous way.

A category of sheaves is a gener-
alized universe of sets

If X is a topological space, then the sheaves
over X (the continuous set-valued functions
on X) are the objects of a category SX.
It is a G-frame.

Since a sheaf is a parameterized set (S(x)
parameterized by point x), we can con-
sider doing set-theoretic constructions on
sheaves by doing them pointwise on the
sets.  For instance, if S(z) and T(z) are
two sheaves, then we can define a product
(S x T)(x) = S(x) x T(x). This is indeed
still a sheaf, as are the results of a number
of constructions such as disjoint unions —
even infinitary ones — and (to use categor-
ical language) equalizers and coequalizers.
Some constructions, such as function spaces
and power sets, do not yield sheaves when
applied pointwise.  Nonetheless, it turns
out that there are sensible interpretations
of these constructions in the category of
sheaves (making it an “elementary topos”).

Geometric constructions

The constructions that do yield sheaves when
done pointwise are called geometric, and

there is a corresponding geometric fragment
of logic (its connectives are \/,A,3 and =).
Categorically, the geometric constructions
are those that can be described as colimits
of finite limits.

Given two categories of sheaves, we are
particularly interested in the functors be-
tween them that preserve the geometric
constructions (i.e. that preserve all colimits,
and finite limits). I shall call such functors
“G-frame homomorphisms”.

Subsheaves of 1 correspond to
open sets

If X is a space, then the sheaf 1 —
the terminal object in SX — has 1(z)
a singleton for all z.  This is because
1 is a finite (nullary) product, and hence
geometric, so it is constructed pointwise. A
subsheat S of 1 — a subobject in SX —
has S(x) always a subset of a singleton,
and so 1s determined by the set of points
x at which S(x) contains its only possible
element. By the continuity condition, this
set 1s an open subset of X. In fact, the
subsheaves of 1 correspond exactly to the
open subsets of X.

Note that we instantly lose classical logic! If
U is an open subset of X, its complement
might not be open (for instance, in the real
line the set of negative reals is open, but its
complement, the set of zero-or-positive reals,
is not). As a consequence, if we consider U
as a subsheaf of 1 we don’t necessarily have
another subsheaf V such that UUV =1
and UNV =0 (U and N are interpreted
pointwise). Thinking of SX as a generalized
universe of sets, the subsheaves of 1 are
the subsets of a singleton and correspond to
logical truth values. The upshot is that we
lose the law of excluded middle, PV —P.



Categories of sheaves are dual to
spaces (more or less)

An ordinary set S is a disjoint union of
copies of the singleton set 1 — one copy
for each element of S —, and a sheaf is
a colimit of subsheaves of 1. Hence any
G-frame homomorphism from one category
of sheaves, SY., to another, SX, is defined
by its action on the subsheaves of 1.
Moreover, since it preserves finite limits, it
preserves monomorphisms and hence maps
the subsheaves of 1 in one category to sub-
sheaves of 1 in the other and hence gives a
function from the open subsets of one space
to the open subsets of the other. One can
follow the argument further to show that
this function preserves finite intersections
and arbitrary unions and is exactly the
inverse image function on open sets for a
continuous map from X to Y. In other
words, we can represent continuous maps
between spaces as, exactly, functors between
the categories of sheaves that preserve the
geometric constructions.

Well, that’s not quite true. But it works if
X and Y are “sober”, which decent spaces
are. Continuous maps from X to Y are
equivalent to G-frame homomorphisms from
SY to SX. (Note the reversal of direction!
That’s why it’s a “duality”.)

Generalizing the duality

I haven’t defined “G-frame” exactly, but
there are plenty of categories other than
the categories of sheaves that support the
geometric constructions sufficiently well to
be admitted as G-frames. They generalize
the categories of sheaves as generalized
categories of sets, and we try to understand
the above equivalence as generalizing on the
space side.

The morphisms between the generalized
spaces, which generalize continuous maps
and by definition are dual to G-frame homo-

morphisms between the generalized universes
of sets, are called geometric morphisms.

The “generalized space” of sets

The most obvious example comes out of the
very notion of sheaves. We have already
motivated them as “continuous set-valued
functions”, so a sheaf S on X should be
a continuous map from X to “the space of
sets”, hence, to generalize the equivalence,
a G-frame homomorphism from a G-frame
E to SX. Because S is just an object of
SX, and this is to determine the entire
G-frame homomorphism from &, & should
be generated geometrically by an object Sy
— every other object is constructed from
So by the geometric constructions. 1 shall
not go into the details of the structure of
E, but it can be constructed. It is what
Johnstone calls the “object classifier”. 1
shall denote it S[set]. It has an object
So, the generic set, which has no properties
other than those which follow from the fact
that it is a set. If you wanted to describe
a way of constructing something or other
out of an arbitrary set, and you started
your description by saying “Let Sy be a set
...7, then — at least if your construction is
geometric — Sy is really the generic set in
E. It has no known elements (as morphisms
from 1 to Sp), but on the other hand it
has no isomorphism with the initial object
). Slset] has the property that G-frame
homomorphisms from S[set] to a category
of sheaves §X are equivalent to objects of

SX.

An ordinary category of sheaves, SX, cor-
responds to an ordinary space, X. Our
generalized category of sheaves S[set] does
not correspond to an ordinary space [sef]
of sets, but nonetheless we can see a sense
in which we know what the points of [sef]
are — they are just sets, and a continuous
map from X to [set] (defined as a G-frame
homomorphism from S[set] to SX) is a
continuous set-valued function. It’s just



that the extra structure on this space, used
to define what “continuous” means, is not
the usual topological structure, expressed in
terms of neighbourhoods or open sets.

We can understand this in terms of the
core, generating structure of the category
of sheaves, from which everything else is
constructed geometrically.  Continuity be-
tween topological spaces can be defined in
terms of the open sets, which correspond
to the subsheaves of 1, so there is no real
need to consider the whole of SX: the
subobjects of 1 are enough. In SJ[set],
on the other hand, the essential part is
the generic set Sy which lies beyond the
subobjects of 1. For ordinary topological
spaces the subobjects of 1 are all we need
to consider; for generalized spaces the rest
of the G-frame is also important.

Classifying toposes for geometric
theories

Suppose a logical theory is presented “using
the geometric constructions”.  There are
various ways of imposing appropriate pre-
sentational constraints, but a simple one is
to say that the theory is presented using
sorts, function symbols (including constants),
predicate symbols (including propositions)
and axioms of the form ¢ F ¢ where ¢
and ¢ are logical formulae built up from
the language ingredients by using finitary
conjunction A, arbitrary disjunction \/,
existential quantification 4, and equality =.

If T is a geometric theory, I shall write [7]
for the generalized “space of models” of T,
known technically as the classifying topos
of T'. Its points are the models of T', and,
just as for [set], the structure needed to
capture the idea of continuity is given by a
G-frame S[T]. It is constructed by taking a
“generic model” of T" and adding everything
that can be constructed geometrically from
it.

You can find the construction in more detail
in Johnstone or in Mac Lane and Moerdijk

(described as the classifying topos, but this
is topos as generalized universe of sets, i.e.
G-frame). What makes it work is that for
any G-frame &, the models of T in & are
equivalent to G-frame homomorphisms from
S[T] to &: first map the generic model of T
in S[T] to the given model in &, and extend
this to the whole of S[T] by applying the
same geometric constructions on both sides.

Continuity =
genericity

geometricity

Taking &£ to be S[T’], then a G-frame
homomorphism from S[T] to S[T'] is a
model of T"in S[T"], in other words a model
of T that’s constructed geometrically from
the generic model of T (because everything
in S[T"] is made geometrically from the
generic model of 7). How do you describe
this? You say “Let M be a model of T"” —
M is now your generic model of T’ since
you have assumed nothing about it other
than what follows from its being a model
of 7" — and then you proceed to construct
a model of T geometrically. Of course,
this is just a particularly disciplined way of
getting functions from the class of models
of T" (points of [T"]) to the class of models
of T (points of [T]), so we can think of it
as a “continuous” map from [7"] to [T] and
“continuous” now refers to the genericity of
the description and the geometricity of the
construction.

As an illustration, an object of S[T] is
a G-frame homomorphism from S[set] to
S[T], i.e. geometric morphism from [T] to
[set]. Each is defined by saying “Let M
be a model of T” and then, geometrically,
constructing a set.

Geometric theories for spaces

If X is a topological space, then we can
present a propositional geometric theory T

as follows. It has no sorts, functions or



predicates except for some nullary predi-
cates (i.e. propositional symbols), namely
a proposition Py for each open set U and
axioms

Py Py
true b Py
Po APy Pyayv
PUS'_\/UGSPU

(S here is any set of opens — note the
possibly infinite disjunction!)

(whenever U C V)

Now any point x gives a model for this
propositional theory, assigning the value
true to the proposition Py iff x € U. If
X is sober, then in fact the points of X
correspond exactly to the models of the
theory, i.e. the points of the classifying
topos [T]. It can also be proved that
the category SX of sheaves over X is
equivalent to S[T]: for any G-frame &, the
G-frame homomorphisms from SX to & are
equivalent to models of T in £. (Bearing
in mind that propositional symbols must be
interpreted in a model as subobjects of 1,
the generic model of T in SX interprets
each Py as the subsheaf of 1 corresponding
to the open set U.) All in all, we might as
well consider X = [T1.

Locales classify propositional ge-
ometric theories

The sobriety condition on the spaces can
be circumvented entirely if you deal directly
with propositional geometric theories instead
of spaces. The classifying toposes for
propositional geometric theories are called
locales, and these are the more genuinely
spatial of the generalized spaces.  They
are the toposes that are determined by the
subobjects of 1 with no need to consider
the rest of the G-frame.

The tendency in topos theory is to study
locales in place of topological spaces, and
you can read more about them in Vickers [6]
and Johnstone [3].

Summary

A topos-as-generalized-space is the space of
models for a geometric theory. The whole
story is in answer to the question of what
“space” means here.

If the theory is presented as T, then its
topos — its classifying topos — is denoted

[T].
The points of [T] are the models of T.

Associated with each topos [T] is a gen-
eralized category of sets, S[T]. It is
got by taking a “generic” model of T and
including everything that can be constructed
“geometrically” from it.

The geometric morphisms (generalizing con-
tinuous maps) from [T] to [T'] are the
transformations of models of T" into models
of T" that can be described generically
and geometrically. They are equivalent to
models of T" in S[T], or to functors from
S[T'] to S[T] that preserve finite limits
and arbitrary colimits. In effect, “space”
of models means “class” of models together
with whatever structure is needed to impose
this constraint on the transformations.

Sober topological spaces are the spaces of
models for (certain) propositional geometric
Geometric morphisms between
their classifying toposes correspond to con-
tinuous maps between the spaces. A sheaf
over X 1s a continuous map from X to
[set].

theories.

Locales are the classifying toposes for general
propositional geometric theories.
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