
PSfrag replacements

Semantics

Society

Toposes pour les nuls

Steve Vickers

Imperial College

Introduction

The very �rst sentence of Mac Lane and

Moerdijk [5] says:

A topos can be considered both

as a \generalized space" and as

a \generalized universe of sets".

The \generalized universe of sets" aspect of

toposes is relatively easy to understand and

is well documented in the literature: start

with Goldblatt [1] and proceed via Mac

Lane and Moerdijk [5], or MacLarty [4],

to Johnstone [2]. The basic trick is to

use categorical properties to characterize

set-theoretic constructions in the category of

sets, and thence to transfer them to other

categories that are su�ciently similar.

The generalized spaces, on the other hand,

though present in ideas of toposes right

from their introduction by Grothendieck,

are somewhat mysterious. Much of this is

because the generalized universes of sets are

not direct expressions of the spatial idea

but represent it by a mathematical duality.

My aim here is at least to present a

clear picture of how intuitions of generalized

spaces �t into a mathematical framework of

generalized categories of sets.

To try to be clear, I shall use the word

topos only for the view as generalized space.

When I consider it as a generalized universe

of sets, I shall call it a G-frame (standing

for Giraud/Grothendieck-frame). By the

duality which I shall explain, the G-frame

is used to represent the topos.

Continuous functions

If f(x) is a real-valued function of a

real number x, we have a simple pictorial

intuition of what it means for f to be

\continuous" | namely that its graph has

no gaps or instantaneous jumps in it.

Consider, for instance, the function

f(x) =

�

0 if x < 0

1 if x � 0
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This has a gap in it | or, if you feel you

could �ll that in with a vertical line, it's

an instantaneous jump. This function is

discontinuous at x = 0.

The de�nition in terms of drawing graphs

and looking for gaps or jumps is not a

rigorous one, and it was made more precise

as follows. If a function is continuous at

a point x

0

, then there is a surrounding

neighbourhood, one that goes a little way

beyond x

0

on each side, within which f(x)

doesn't stray too far from f(x

0

). How

big this neighbourhood can be depends on

what you think \too far" means, but as

long as you are prepared to allow f(x)

some positive amount of latitude then you

can also allow x some positive amount of

latitude. To express it in the famous \�� �"

formulation, f is continuous at x

0

i�

8� > 0:9� > 0:8x:(jx� x

0

j < � )

jf(x)� f(x

0

)j < �)

Topological spaces

That looks very heavily dependent on the

fact that we are working with real numbers,

but really it depends solely on the notion

of \neighbourhood". For the real numbers,

we say that a set N is a neighbourhood of

x

0

i� it contains not only x

0

itself, but also

all the numbers close to x

0

within some

unspeci�ed positive distance. Then f is

continuous at x

0

i� for every neighbourhood

N of f(x

0

) (corresponding to �) there is a

neighbourhood M of x

0

(corresponding to

�) that is mapped into N by f . It is

possible to axiomatize the notion of neigh-

bourhood in an abstract way and thereby

de�ne continuity for functions in contexts

other than the real line. An alternative

axiomatization, and in many ways a more

useful one, is of open sets, those that are

neighbourhoods of all their elements. Then

a function is continuous (everywhere) i� the

inverse image of every open set is open.

A set equipped with such a structure of

neighbourhoods, or, equivalently, of open

sets, is called a topological space.

Sheaf = continuous set-valued

function

What could it mean for a set-valued function

S(x) to be continuous? Let us try to

apply the same intuition as we had before.

S is continuous at x

0

i� there is some

neighbourhood of x

0

within which S(x)

doesn't stray too far from S(x

0

). What

neighbourhood is needed depends on what

part | which element | of the set S(x

0

)

we are looking at. What we want to

formalize is that each y

0

2 S(x

0

) is still

in S(x) as long as x is close to x

0

, but

that if we stray too far we start gaining

or losing elements. Hence there is some

neighbourhood N of x

0

and some selection

y

x

2 S(x) for the values x 2 N such that

(y

x

)

x2N

represents y

0

\as you move around

a little". Such a \continuous set-valued

function" is called a sheaf. What I have

written is admittedly still vague, but it is

the idea behind the de�nition of sheaf as

local homeomorphism that you will see in

the standard texts. Here is an example of

a sheaf on the real line:

S(x)

x

(B)

(A)

1

0

r

r

r

r

� -
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Notice the forking structure at (A) (x = 0)

and (B) (x = 1). The two blobs above

x = 0, near (A), represent two distinct

elements of S(0) (and there's a third one,

not blobbed, lower down on the lowest thick

horizontal line). To the right, for x just

greater than 0, the two blobs maintain their

separate identities along horizontal lines.

However, to the left, for x just less than

0, they become equal so that S(x) has

only two elements instead of three. (B) is

similar.

We also get a natural notion of morphism

between sheaves S and T : it will have

for each x a function from S(x) to T (x),

together with conditions to ensure that these

functions �t together in a continuous way.

A category of sheaves is a gener-

alized universe of sets

If X is a topological space, then the sheaves

over X (the continuous set-valued functions

on X) are the objects of a category SX.

It is a G-frame.

Since a sheaf is a parameterized set (S(x)

parameterized by point x), we can con-

sider doing set-theoretic constructions on

sheaves by doing them pointwise on the

sets. For instance, if S(x) and T (x) are

two sheaves, then we can de�ne a product

(S � T )(x) = S(x) � T (x). This is indeed

still a sheaf, as are the results of a number

of constructions such as disjoint unions |

even in�nitary ones | and (to use categor-

ical language) equalizers and coequalizers.

Some constructions, such as function spaces

and power sets, do not yield sheaves when

applied pointwise. Nonetheless, it turns

out that there are sensible interpretations

of these constructions in the category of

sheaves (making it an \elementary topos").

Geometric constructions

The constructions that do yield sheaves when

done pointwise are called geometric, and

there is a corresponding geometric fragment

of logic (its connectives are

W

;^;9 and =).

Categorically, the geometric constructions

are those that can be described as colimits

of �nite limits.

Given two categories of sheaves, we are

particularly interested in the functors be-

tween them that preserve the geometric

constructions (i.e. that preserve all colimits,

and �nite limits). I shall call such functors

\G-frame homomorphisms".

Subsheaves of 1 correspond to

open sets

If X is a space, then the sheaf 1 |

the terminal object in SX | has 1(x)

a singleton for all x. This is because

1 is a �nite (nullary) product, and hence

geometric, so it is constructed pointwise. A

subsheaf S of 1 | a subobject in SX |

has S(x) always a subset of a singleton,

and so is determined by the set of points

x at which S(x) contains its only possible

element. By the continuity condition, this

set is an open subset of X. In fact, the

subsheaves of 1 correspond exactly to the

open subsets of X.

Note that we instantly lose classical logic! If

U is an open subset of X, its complement

might not be open (for instance, in the real

line the set of negative reals is open, but its

complement, the set of zero-or-positive reals,

is not). As a consequence, if we consider U

as a subsheaf of 1 we don't necessarily have

another subsheaf V such that U [ V = 1

and U \ V = ; ([ and \ are interpreted

pointwise). Thinking of SX as a generalized

universe of sets, the subsheaves of 1 are

the subsets of a singleton and correspond to

logical truth values. The upshot is that we

lose the law of excluded middle, P _ :P .
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Categories of sheaves are dual to

spaces (more or less)

An ordinary set S is a disjoint union of

copies of the singleton set 1 | one copy

for each element of S |, and a sheaf is

a colimit of subsheaves of 1. Hence any

G-frame homomorphism from one category

of sheaves, SY , to another, SX, is de�ned

by its action on the subsheaves of 1.

Moreover, since it preserves �nite limits, it

preserves monomorphisms and hence maps

the subsheaves of 1 in one category to sub-

sheaves of 1 in the other and hence gives a

function from the open subsets of one space

to the open subsets of the other. One can

follow the argument further to show that

this function preserves �nite intersections

and arbitrary unions and is exactly the

inverse image function on open sets for a

continuous map from X to Y . In other

words, we can represent continuous maps

between spaces as, exactly, functors between

the categories of sheaves that preserve the

geometric constructions.

Well, that's not quite true. But it works if

X and Y are \sober", which decent spaces

are. Continuous maps from X to Y are

equivalent to G-frame homomorphisms from

SY to SX. (Note the reversal of direction!

That's why it's a \duality".)

Generalizing the duality

I haven't de�ned \G-frame" exactly, but

there are plenty of categories other than

the categories of sheaves that support the

geometric constructions su�ciently well to

be admitted as G-frames. They generalize

the categories of sheaves as generalized

categories of sets, and we try to understand

the above equivalence as generalizing on the

space side.

The morphisms between the generalized

spaces, which generalize continuous maps

and by de�nition are dual to G-frame homo-

morphisms between the generalized universes

of sets, are called geometric morphisms.

The \generalized space" of sets

The most obvious example comes out of the

very notion of sheaves. We have already

motivated them as \continuous set-valued

functions", so a sheaf S on X should be

a continuous map from X to \the space of

sets", hence, to generalize the equivalence,

a G-frame homomorphism from a G-frame

E to SX. Because S is just an object of

SX, and this is to determine the entire

G-frame homomorphism from E, E should

be generated geometrically by an object S

0

| every other object is constructed from

S

0

by the geometric constructions. I shall

not go into the details of the structure of

E, but it can be constructed. It is what

Johnstone calls the \object classi�er". I

shall denote it S[set]. It has an object

S

0

, the generic set, which has no properties

other than those which follow from the fact

that it is a set. If you wanted to describe

a way of constructing something or other

out of an arbitrary set, and you started

your description by saying \Let S

0

be a set

: : :", then | at least if your construction is

geometric | S

0

is really the generic set in

E. It has no known elements (as morphisms

from 1 to S

0

), but on the other hand it

has no isomorphism with the initial object

;. S[set] has the property that G-frame

homomorphisms from S[set] to a category

of sheaves SX are equivalent to objects of

SX.

An ordinary category of sheaves, SX, cor-

responds to an ordinary space, X. Our

generalized category of sheaves S[set] does

not correspond to an ordinary space [set]

of sets, but nonetheless we can see a sense

in which we know what the points of [set]

are | they are just sets, and a continuous

map from X to [set] (de�ned as a G-frame

homomorphism from S[set] to SX) is a

continuous set-valued function. It's just

4



that the extra structure on this space, used

to de�ne what \continuous" means, is not

the usual topological structure, expressed in

terms of neighbourhoods or open sets.

We can understand this in terms of the

core, generating structure of the category

of sheaves, from which everything else is

constructed geometrically. Continuity be-

tween topological spaces can be de�ned in

terms of the open sets, which correspond

to the subsheaves of 1, so there is no real

need to consider the whole of SX: the

subobjects of 1 are enough. In S[set],

on the other hand, the essential part is

the generic set S

0

which lies beyond the

subobjects of 1. For ordinary topological

spaces the subobjects of 1 are all we need

to consider; for generalized spaces the rest

of the G-frame is also important.

Classifying toposes for geometric

theories

Suppose a logical theory is presented \using

the geometric constructions". There are

various ways of imposing appropriate pre-

sentational constraints, but a simple one is

to say that the theory is presented using

sorts, function symbols (including constants),

predicate symbols (including propositions)

and axioms of the form � `  where �

and  are logical formulae built up from

the language ingredients by using �nitary

conjunction ^, arbitrary disjunction

W

,

existential quanti�cation 9, and equality =.

If T is a geometric theory, I shall write [T ]

for the generalized \space of models" of T ,

known technically as the classifying topos

of T . Its points are the models of T , and,

just as for [set], the structure needed to

capture the idea of continuity is given by a

G-frame S[T ]. It is constructed by taking a

\generic model" of T and adding everything

that can be constructed geometrically from

it.

You can �nd the construction in more detail

in Johnstone or in Mac Lane and Moerdijk

(described as the classifying topos, but this

is topos as generalized universe of sets, i.e.

G-frame). What makes it work is that for

any G-frame E, the models of T in E are

equivalent to G-frame homomorphisms from

S[T ] to E: �rst map the generic model of T

in S[T ] to the given model in E, and extend

this to the whole of S[T ] by applying the

same geometric constructions on both sides.

Continuity = geometricity +

genericity

Taking E to be S[T

0

], then a G-frame

homomorphism from S[T ] to S[T

0

] is a

model of T in S[T

0

], in other words a model

of T that's constructed geometrically from

the generic model of T

0

(because everything

in S[T

0

] is made geometrically from the

generic model of T

0

). How do you describe

this? You say \Let M be a model of T

0

" |

M is now your generic model of T

0

, since

you have assumed nothing about it other

than what follows from its being a model

of T

0

| and then you proceed to construct

a model of T geometrically. Of course,

this is just a particularly disciplined way of

getting functions from the class of models

of T

0

(points of [T

0

]) to the class of models

of T (points of [T ]), so we can think of it

as a \continuous" map from [T

0

] to [T ] and

\continuous" now refers to the genericity of

the description and the geometricity of the

construction.

As an illustration, an object of S[T ] is

a G-frame homomorphism from S[set] to

S[T ], i.e. geometric morphism from [T ] to

[set]. Each is de�ned by saying \Let M

be a model of T" and then, geometrically,

constructing a set.

Geometric theories for spaces

If X is a topological space, then we can

present a propositional geometric theory T

as follows. It has no sorts, functions or
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predicates except for some nullary predi-

cates (i.e. propositional symbols), namely

a proposition P

U

for each open set U and

axioms

P

U

` P

V

(whenever U � V )

true ` P

X

P

U

^ P

V

` P

U\V

P

S

S

`

W

U2S

P

U

(S here is any set of opens | note the

possibly in�nite disjunction!)

Now any point x gives a model for this

propositional theory, assigning the value

true to the proposition P

U

i� x 2 U . If

X is sober, then in fact the points of X

correspond exactly to the models of the

theory, i.e. the points of the classifying

topos [T ]. It can also be proved that

the category SX of sheaves over X is

equivalent to S[T ]: for any G-frame E, the

G-frame homomorphisms from SX to E are

equivalent to models of T in E. (Bearing

in mind that propositional symbols must be

interpreted in a model as subobjects of 1,

the generic model of T in SX interprets

each P

U

as the subsheaf of 1 corresponding

to the open set U .) All in all, we might as

well consider X = [T ].

Locales classify propositional ge-

ometric theories

The sobriety condition on the spaces can

be circumvented entirely if you deal directly

with propositional geometric theories instead

of spaces. The classifying toposes for

propositional geometric theories are called

locales, and these are the more genuinely

spatial of the generalized spaces. They

are the toposes that are determined by the

subobjects of 1 with no need to consider

the rest of the G-frame.

The tendency in topos theory is to study

locales in place of topological spaces, and

you can read more about them in Vickers [6]

and Johnstone [3].

Summary

A topos-as-generalized-space is the space of

models for a geometric theory. The whole

story is in answer to the question of what

\space" means here.

If the theory is presented as T , then its

topos | its classifying topos | is denoted

[T ].

The points of [T ] are the models of T .

Associated with each topos [T ] is a gen-

eralized category of sets, S[T ]. It is

got by taking a \generic" model of T and

including everything that can be constructed

\geometrically" from it.

The geometric morphisms (generalizing con-

tinuous maps) from [T ] to [T

0

] are the

transformations of models of T into models

of T

0

that can be described generically

and geometrically. They are equivalent to

models of T

0

in S[T ], or to functors from

S[T

0

] to S[T ] that preserve �nite limits

and arbitrary colimits. In e�ect, \space"

of models means \class" of models together

with whatever structure is needed to impose

this constraint on the transformations.

Sober topological spaces are the spaces of

models for (certain) propositional geometric

theories. Geometric morphisms between

their classifying toposes correspond to con-

tinuous maps between the spaces. A sheaf

over X is a continuous map from X to

[set].

Locales are the classifying toposes for general

propositional geometric theories.
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